Home » turfgrass physiology

Tag: turfgrass physiology

Turfgrass Physiology; Diffusion & Osmosis,

In nature, it is often said that things will tend towards chaos and this is described by a mechanism known as Entropy. In one of his recent TV programs, Professor Brian Cox demonstrated this using a sand castle as his example. Simply put, Entropy says that due to natural movement by wind and weather, sand is highly unlikely to form itself into a sand castle. However, a sand castle is highly likely to be converted to a pile of sand. This is Entropy in action and it seems to say that nature prefers chaos to order; but, whose description of “order” are we using for this?

What if nature was viewing the sand castle as chaos and was instead trying to make order of it by turning it back into a nondescript (as far as we are concerned) pile of sand?

The fact is, that instead of chaos:

Natural systems will tend towards equilibrium.

A common example of this tendency towards equilibrium is the wind we feel on our faces every day. Wind is caused by uneven warming of the earth’s surface. Where one area is warmed more directly, the air above it will rise. This creates a space for cool air. When that cool air rushes in to fill the void, we feel it as wind.

So, although these processes might look like chaos to us (when our sand castle is ruined), it’s really the opposite to chaos that’s happening:

Natural systems will tend towards equilibrium.

This is the way of nature and it informs and drives a lot of what goes on in and around the grass plants on the bowling green.

Today, we will look at two mechanisms of turfgrass physiology that Read more

Turfgrass Physiology; Respiration

The breakdown of sugars to release energy in a process that provides the chemical energy source for all cellular activities. Respiration depends on a supply of glucose (from photosynthesis), oxygen and suitable temperature.

Last time I introduced photosynthesis, one of the key processes in turfgrass physiology, used by plants to produce their own food. This happens when the plants use the photosynthesis process to turn carbon dioxide taken in from the air by the leaves into a simple sugar (glucose) product that can then be used to fuel the growth and build tissue in all areas of the plant. We saw how the glucose can be used immediately to fuel the plant’s internal processes, or be stored as starch for later use.

The plant uses a process called Respiration to drive growth and development. In much the same way that we respire, i.e. burning food to grow, develop and keep our bodies healthy, plants burn the food created by photosynthesis to fuel growth and to build and repair all of the component parts of the plant.

A simple way to think of Respiration is that it is almost the opposite reaction to Photosynthesis. Here’s how it looks: Read more